
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 14. December 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Homework 13 HS 20

Exercise Class (Room & TA):
Submitted by:
Peer Feedback by:
Points:

Submission: This exercise sheet is not to be turned in. The solutions will be published at the end of
the week, before Christmas.

Exercise 13.1 Shortest path with negative edge weights (part I).

Let G = (V,E, c) be a graph with edge weights c : E → Z \ {0} and cmin = mine∈E c(e).

a) Since Dijkstra’s algorithm must not be used whenever some edge weights are negative (i.e., cmin <
0), one could come up with the idea of applying a transformation to the edge weight of every edge
e ∈ E, namely c′(e) = c(e) − cmin + 1, such that all weights become positive, and then �nd a
shortest path P in G by running Dijkstra with these new edge weights c′.

Show that this is not a good idea by providing an example graph G with a weight function c, such
that the above approach �nds a path P that is not a shortest path in G. The example graph should
have exactly 5 nodes and not all weights should be negative.

Solution.
Consider for example the following graph:

We have that cmin = mine∈E c(e) = −1, thus we add the value 1− (−1) = 2 to every edge weight
to obtain the following transformed graph:

A shortest s-t-path in the trasformed graph is 〈s, u, v, t〉. However, there is a shorter path in the ori-
ginal graph since the vertices 〈u, v, w, u〉 form a cycle with negative weight. Hence, for an arbitrary
s-t-path in the original graph, we can always �nd a path with smaller weight by following this cycle
once more.

b) Now consider the problem of �nding a minimum spanning tree of a connected undirected graph
G = (V,E, c). Show that if we add any number b to all weights of the edges, then (the edge sets of)
minimum spanning trees of G do not change.

So if we have an algorithm that �nds a minimum spanning tree in any connected undirected graph
with positive edge weights, we can also use it to �nd a minimum spanning tree in arbitrary connected
undirected graph (by using new weights c′(e) = c(e)− cmin + 1).

Solution.
Let T be any spanning tree of G. Before changing the edge weights its weight is

W (T) =
∑
e∈T

c(e),

and after we add b to all edge weights, the weight of T becomes

W ′(T) =
∑
e∈T

(c(e) + b) =
∑
e∈T

c(e) +
∑
e∈T

b = W (T) + (|V | − 1)b.

Hence for any spanning tree its weight changes by the same number, so if a tree T had minimal
weight before adding b, it will also have minimal weight after adding b.

Exercise 13.2 Shortest path with negative edge weights (part II).

We consider the following graph:

1

3

2

4

5

6

1 2

4
1

4 - 4 2 5

1

3 1

5

1. What is the length of the shortest path from vertex 1 to vertex 6?

2. Consider Dijkstra’s algorithm (that fails here, because the graph has negative edge weights).
Which path length from vertex 1 to vertex 6 is Dijkstra computing? State the sets S, V \ S im-
mediately before Dijkstra is making its �rst error and explain in words what goes wrong.

3. Which e�cient algorithm can be used to compute a shortest path from vertex 1 to vertex 6 in the
given graph? What is the running time of this algorithm in general, expressed in n, the number
of vertices, and m, the number of edges?

2

4. On the given graph, execute the algorithm by Floyd and Warshall to �nd all shortest paths. Ex-
press all entries of the (6 × 6 × 7)-table as 7 tables of size 6 × 6. (It is enough to state the path
length in the entry without the predecessor vertex.) Mark the entries in the table in which one
can see that the graph does not contain a negative cycle.

Solution.

1. The shortest path from vertex 1 to vertex 6 is (1, 3, 5, 2, 6) and has length 5− 4 + 1 + 1 = 3.

2. With Dijkstra’s algorithm we �nd the path (1, 2, 6) having length 4. The �rst mistake happens
already after having processed vertex 1. The sets at that point in time are S = {1} and V \ S =
{2, 3, 4, 5, 6}. To vertex 2, we know a path of length 3, to vertex 3 a path of length 5. To the other
vertices, we do not know a path so far. Hence, Dijkstra’s algorithm choses vertex 2 to continue,
i.e., includes 2 into S, which corresponds to the assumption, that we already know the shortest
path to this vertex. This is clearly a mistake, since the path (1, 3, 5, 2) has only length 2.

3. We can use the algorithm of Bellman and Ford which runs in O(nm) time.

4. Each of the following tables corresponds to a �xed value k ∈ {0, 1, 2, 3, 4, 5, 6} and contains the
lengths of all shortest paths that use only vertices in {0, . . . , k}. Since all entries on the diagonal
are non-negative, we can conclude that the graph does not contain any negative cycle.

von\nach 1 2 3 4 5 6
1 0 3 5 ∞ ∞ ∞
2 1 0 4 ∞ 4 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 ∞ 1 ∞ 2 0 ∞
6 ∞ ∞ ∞ ∞ 2 0

k = 0

von\nach 1 2 3 4 5 6
1 0 3 5 ∞ ∞ ∞
2 1 0 4 ∞ 4 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 ∞ 1 ∞ 2 0 ∞
6 ∞ ∞ ∞ ∞ 2 0

k = 1

von\nach 1 2 3 4 5 6
1 0 3 5 ∞ 7 4

2 1 0 4 ∞ 4 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 2 1 5 2 0 2

6 ∞ ∞ ∞ ∞ 2 0
k = 2

von\nach 1 2 3 4 5 6
1 0 3 5 6 1 4
2 1 0 4 5 0 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 2 1 5 2 0 2
6 ∞ ∞ ∞ ∞ 2 0

k = 3

3

von\nach 1 2 3 4 5 6
1 0 3 5 6 1 4
2 1 0 4 5 0 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 2 1 5 2 0 2
6 ∞ ∞ ∞ ∞ 2 0

k = 4

von\nach 1 2 3 4 5 6
1 0 2 5 3 1 3

2 1 0 4 2 0 1
3 -2 -3 0 -2 -4 -2

4 7 6 10 0 5 7

5 2 1 5 2 0 2
6 4 3 7 4 2 0

k = 5

von\nach 1 2 3 4 5 6
1 0 2 5 3 1 3
2 1 0 4 2 0 1
3 -2 -3 0 -2 -4 -2
4 7 6 10 0 5 7
5 2 1 5 2 0 2
6 4 3 7 4 2 0

k = 6

Exercise 13.3 Variants of shortest-path-problems.

LetG = (V,E) be a directed weighted graph with positive edge weights and let s, t ∈ V be two vertices.

Design an e�cient algorithm for each of the following variants of the shortest-path problem and state
the running time of your algorithm.

1. We would like to �nd the shortest path from s to t that passes through two additionally given
vertices u and v.

2. Let k ∈ N. Among all paths from s to twith at most k vertices in between (i.e., with at most k+1
edges) we would like to �nd the shortest such path.

Solution.

1. There are two possible orders in which we can visit u and v: either we �rst go on a path from s
to u, then from u to v, and �nally from v to t, or we �rst go on a path from s to v, then from v
to u, and �nally from u to t. To make sure that it is a shortest path, each of these subpaths must
also be a shortest path. Therefore, we can see the shortest s-t-path as the concatenation of three
shortest paths as speci�ed above.

Hence, we compute 6 shortest paths: 1. from s to u, 2. from s to v, 3. from u to v, 4. from v to u, 5.
from v to t, 6. from u to t. Then, we concatenate 1, 3, and 5 to on path and 2,4, and 6 to the other
path and choose the shorter one.

Cost: We compute 6 (a constant number of) shortest paths. The cost is thus asymptotically the sa-
me as the computation of one shortest path. Running Dijkstra’s algorithm with Fibonacci Heaps,
the running time is thusO(|E|+ |V | · log(|V |)), where |E| is the cardinality of the edges and |V |
the cardinality of the vertices. If we use a binary heap, the running time isO((|E|+|V |)·log(|V |)).

4

2. We modify the algorithm of Bellman-Ford. For each vertex v ∈ V and each i ∈ N we remember
the length di,v of a shortest path from s to v that contains at most i edges. Furthermore, let pi,v be
the predecessor of v in a shortest s-v-path with at most i edges. We get the following pseudecode:
Bellman-Ford(V , E, w, s)

Input: directed, weighted Graph (V,E,w), start vertex s ∈ V

Output: Predecessor πi,v for all v ∈ V and all i ∈ {0, . . . , k}

1 for each v ∈ V do d0,v ←∞; π0,v ← null
2 d0,s ← 0

3 for i← 1, . . . , k + 1 do
4 for each v ∈ V do di,v ← di−1,v ; πi,v ← πi−1,v

5 for each (u, v) ∈ E do
6 if di−1,u + w((u, v)) < di,v then
7 di,v ← di−1,u + w((u, v))

8 πi,v ← u

After i iterations of the loop in step 3, the algorithm considered all paths from start vertex that
contain at most i edges. After k + 1 iterations, the algorithm has thus considered all paths that
contain at most k intermediate vertices. A shortest s-t-path with at most k + 1 edges, can then
be reconstructed by going backwards from t: we initially set v ← t and follow the predecessor
vertices until we reach s. See also the pseudocode below.

5

Reconstruct-Shortest-Path(πi,v , s, t)

Input: predecessor πi,v for all v ∈ V ans all i ∈ {0, . . . , k}, vertices s and t

Output: A shortest (s, t)-path P = 〈v0, v1, . . . , vl〉 with v0 = s, vl = t and l ≤ k + 1

1 if dk+1,t =∞ then report that no (s, t)-path with at most k + 1 edges exists.
2 v ← t; P ← 〈〉; i← k + 1

3 while v 6= null do P ← v ⊕ P ; v ← πi,v ; i← i− 1

4 return P

Hereby let P be stored as sorted list. The operator ⊕ de�nes the concatenation of two lists, and
v ⊕ P de�nes the list that is created when v is put to the beginning of P .

Every iteration in the �rst algorithm requiresO(|V |+|E|) time. Additionally, we can reconstruct
a shortest path with the second algorithm inO(|V |) time. The total time is thusO(k ·(|V |+|E|)),
i.e. O(k · |E|) if the graph is connected.

Exercise 13.4 Invariant and correctness of algortihm (Exam exercise from January 2020).

Given is a weighted directed acyclic graph G = (V,E,w), where V = {1, . . . , n}. The goal is to �nd
the length of the longest path in G.

Let’s �x some topological ordering ofG and consider the array top[1, . . . , n] such that top[i] is a vertex
that is on the i-th position in the topological ordering.

Consider the following pseudocode

Algorithm 1 Find-length-of-longest-path(G, top)
L[1], . . . , L[n]← 0, . . . , 0
for i = 1, . . . , n do

v ← top[i]
L[v]← max

(u,v)∈E

{
L[u] + w

(
(u, v)

)}
return max

1≤i≤n
L[i]

Here we assume that maximum over the empty set is 0.

Show that the pseudocode above satis�es the following loop invariant INV(k) for 1 ≤ k ≤ n: After k
iterations of the for-loop, L[top[j]] contains the length of the longest path that ends with top[j] for all
1 ≤ j ≤ k.

Speci�cally, prove the following 3 assertions:

i) INV(1) holds.

ii) If INV(k) holds, then INV(k + 1) holds (for all 1 ≤ k < n).

iii) INV(n) implies that the algorithm correctly computes the length of the longest path.

State the running time of the algorithm described above in Θ-notation in terms of |V | and |E|. Justify
your answer.

Proof of i).

6

In the �rst iteration we have v = top[1]. By the de�nition the �rst vertex in topological order has no
incoming edges. Thus, L[top[1]] gets assigned the maximum over the empty set, which we assume to
be 0. As a consequence, INV(1) holds as there is no longest path that ends at top[1] and L[top[1]] = 0.

Proof of ii).

In the (k + 1)-th iteration we have v = top[k + 1]. By the de�nition of topological ordering we have
that all u ∈ V with (u, top[k + 1]) ∈ E are in {top[1], . . . , top[k]}. The length of the longest path via
u ending at v can be decomposed into the length of the longest path ending at u plus the weight of
the edge (u, v). Therefore, given INV(k), i.e., L[top[j]] contains the length of the longest path for all
1 ≤ j ≤ k, the maximum max

(u,v)∈E

{
L[u] + w

(
(u, v)

)}
computes the length of the longest path ending

at v. Consequently, INV(k + 1) holds given INV(k) holds.

Proof of iii).

INV (n) implies that each entry L[v] contains the length of the longest path ending at v. Thus, com-
puting the maximum max

1≤i≤n
L[i] corresponds to computing the length of the longest path in G.

Running time:

The running time is in Θ(|E| + |V |). |E| for the for loop, i.e.,
∑

v∈V deg−(v) = |E|, and |V | for
max
1≤i≤n

L[i].

Exercise 13.5 Minotaurus einsperren (Klausuraufgabe vom Februar 2017).

King Minos instructs Daedalus to construct a maze to imprison the Minotaur. Daedalus presents his
maze with n �elds and a given starting �eld as a drawing on gridded paper. In the following �gure you
can see an example maze with n = 36 �elds. The starting �eld is indicated by an S, and the target �eld
at the exit with a Z . We want to determine how fast the Minotaur can escape from the given maze.

1. Model this problem as a shortest path problem:
• Describe how the maze can be represented as a graph such

that the following is true: The number of vertices on a
shortest path between two vertices representing the star-
ting and target �eld corresponds exactly to the smallest
number of �elds that have to be visited for reaching the
target �eld Z .

• Indicate how many vertices and edges your graph has in
dependency of n.

• Name an algorithm of the lecture that solves the shortest
path problem for this graph as e�ciently as possible. Al-
so, provide the running time as concisely as possible in Θ
notation.

Z
S

Example: In the example on the right the Minotaur has to visit at least 21 �elds (including the
starting and the target �eld) to escape.

2. Various obstacles exist to complicate the escape. This means the time required to move from one
�eld to another changes from obstacle to obstacle. For two adjacent �elds that are not separated
by a wall you are given the time that it takes to move from one �eld to another.

7

How can the modeling from task 1. be adapted to compute, under consideration of the given
times, a fastest route to escape from the maze?

• Describe how the maze can be represented as a graph such
that the following is true: The length of a shortest path
between two vertices representing the starting and target
�eld corresponds exactly to the minimum time necessary
for reaching the target �eld Z .

• Indicate how many vertices and edges your graph has in
dependency of n.

• Name an algorithm of the lecture that solves the shortest
path problem for this graph as e�ciently as possible. Al-
so, provide the running time as concisely as possible in Θ
notation.

Z

S5314
441

52
31251

2
21345

2912
445

3783
54593

22511

Example: In the example on the right one needs at least 44 time units to escape. The fastest route
is indicated in gray.

3. As another variant of task 1., the Minotaur has the force to destroy exactly one inner wall of the
maze (i.e., one wall between two �elds for which both these �elds are inside the maze).

Compute how many �elds the Minotaur has to visit on his esca-
pe at least, by modeling the problem as a shortest path problem.
Name an algorithm that solves this problem as e�ciently as pos-
sible. Also, provide the running time as concisely as possible in
Θ notation.

Example: In the example on the right the Minotaur can destroy
the wall that is marked with an arrow, and has to visit only 7
�elds to escape (and not 21 as in task a)).

←
Z

S

Solution.

1. We create the undirected graph that contains a vertex for every �eld in the labyrinth. Two vertices
are connected, if and only if the corresponding �elds are neighbours and not separated by a wall.

The labyrinth has n �elds, thus the graph has Θ(n) vertices. Every vertex is incident to at most
4 edges, thus the graph has at most Θ(n) edges. To compute a shortest path from S to Z we can
apply BFS that runs in time Θ(n).

2. We again create an undirected graph that contains a vertex for each �eld in the labyrinth. Two
vertices are connected, if and only if the corresponding �elds are neighbours and not separated
by a wall. The cost of an edge corresponds to the cost to go from one �eld to the other.

The labyrinth has n �elds, thus the graph has Θ(n) vertices. Every vertex is incident to at most 4
edges, thus the graph has at most Θ(n) edges. Since now the edges are weighted, we look for the
lightest path from S to Z . We use Dijkstra’s algorithm that runs in O((|E|+ |V |) · log(|V |)) =
O(n log n) time.

3. We create to independent identical copies K1 and K2 of the graph created in the �rst subtask.
In both graphs, we replace the undirected edge by two directed edges, one in each direction. We
assume that K1 corresponds to the situation before destroying a wall, and K2 to the situation
afterwards. Now, we go through all pairs of neighbouring �elds that are separated by an inner

8

wall. Let u1 and v1 be the corresponding vertices of such a pair in K1, and u2 and v2 in K2. We
add a directed edge from u1 to v2 and another one from v1 to u2.

Now, we look for the shortest path from S1 to Z1 or Z2. We can do so again by BFS and stop as
soon as we have found one of the two targets. The running time is again Θ(n).

9

